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Abstract—A range of the published models, both unit cell and pseudohomogeneous chosen to illustrate
the different approaches to modelling effective thermal conductivity, are reviewed. Their predictions are
compared with experimental values obtained for packed beds of alumina and sand within the temperature
range from 400 to 950°C. None predicts the high degree of temperature dependence observed. Their
inadequacy is attributed to the assumption that the particles are opaque to radiation whereas both alumina
and silica are partiaily transmissive. Deficiencies in the prediction of the conductive component by some
models is attributed to their inability to characterize the effects of particle shape and size distribution. The
Godbee and Ziegler (J. Appl. Phys. 37, 55 (1966)) and Kunii and Smith (4.1.Ch.E. JI 6, 71 (1960)) models
gave reasonable predictions for the conductive component of the silica beds at the lower temperatures for
which radiant transfer is negligible.

1. INTRODUCTION

ParT I of this paper reports measured effective
thermal conductivities of packed beds of sand and
alumina at temperatures up to 950°C. A very strong
temperature dependence was found and the impli-
cations of this is discussed in relation to the pre-
dictions of a range of models for static bed con-
ductivities. It is notable that although the models,
which are briefly reviewed, differ markedly between
themselves, they all give predictions within a factor of
two of each other but none predicts the degree of
temperature dependence found.

2. PACKED BED HEAT TRANSFER MODELS

Precise prediction of the effective thermal con-
ductivity of a granular bed would require a knowledge
of the shape, size, location and conductivity of each
particle and their interaction. This is difficult for a
regular array of particles and generally not feasible
for a randomly packed bed so the usual approach to
the problem has been to represent the bed or part of
it by a geometrically simplified unit cell and to cal-
culate the conductivity of this representative unit.
However, the conductivity of the unit cell may only
approximate to that of the bed and the unit cell
approach cannot take into account the long range
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effect of radiation. When allowance needs to be made
for these, resort is made to pseudohomogeneous
models.

2.1. The Wakao and Kato (1] model

Wakao and Kato [1] calculated the effective thermal
conductivity of an orthorhombic array of uniform
spheres (¢ = 0.395) using a relaxation technique and
allowing for three-dimensional heat transfer, a finite
contact area between adjacent spheres and radiation.
The problem was simplified to the calculation of the
profile around a single sphere. Radiant transfer was
assumed to take place in one dimension between
adjacent solid surfaces and also between void surfaces
within the unit cell. By considering the view factors
between these surfaces they evaluated an overall
radiant heat transfer coefficient which was then in-
corporated in the relaxation network. They also per-
formed calculations for a cubic array (¢ = 0.476) and
obtained good agreement with the earlier calculations
of Deissler and Boegli [2]. Wakao and Vortmeyer
[3] have extended this model to take account of low
pressure conditions causing a reduction in the thermal
conductivity of the gas in the voids.

2.2. The Imura and Takegoshi [4] model

This model is a variant of a number of unit cell
models, namely those of Yagi and Kunii [5], Kunii
and Smith [6] and Masamune and Smith [7], which
represent the heat flow in the bed by a network of gas
and solid resistances. The following mechanisms are
considered to take place :
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NOMENCLATURE
a absorption cross-section per unit K backward component of radiative flux
volume of bed [m™'] [Wm~7
b backscattering cross-section per unit Am,; weight fraction of the /th sieve fraction
volume of bed [m~!] N number of sieve fractions
B Vortmeyer’s layer transmittance Nu,, radiative Nusselt number based on gas
d,;  mean sieve spacing for the ith sieve conductivity, A,D,/k,
fraction [m] Nu,, radiation Nusselt number based on solid
D diffusion coefficient of the gas phase conductivity, 4D, /k,
[m?s~1) ¢,  radiant flux [Wm ™3
D, effective diffusion coeflicient of the O  heat flow [W]
stagnant packing [m’s~'] r radial coordinate [m]
D, mean particle size [m] S cross-sectional area of gas-solid path in
Dy, median particle size [m] Godbee and Ziegler model [m?]
Dy, particle weight fraction at a cumulative T temperature [K]
weight fraction of 84% [m] xp  effective gas path length in Bauer and
e particle emissivity Schliinder model [m]
F  deformation factor in the Zehner, and x,  effective radiation length [m]
Bauer and Schiiinder models X length of side in Godbee and Ziegler
go  distribution for characterizing the particle model {m]
size distribution in the Bauer and z axial coordinate [m].
Schliinder model
h,  radiative heat transfer coefficient Greek symbols
[Wm 2K o Godbee and Ziegler shape factor
h,,  radiative heat transfer coefficient in the f dimensionless mean particle spacing in the
gas-solid path [Wm K™ direction of heat transfer, /,/D,
h.,  radiative heat transfer coefficient in the gas ¥ Bauer and Schliinder shape factor
path [Wm K™} J area fraction of the solid-solid contact
I forward component of radiative flux conduction path
[Wm™7] € bed voidage
Iy mean distance between centres of adjacent & gas path area fraction
particles in direction of heat transfer £ gas—solid path area fraction
[m] K.  ratio of the conductive component of the
A gas film thickness in gas—solid path [m] effective conductivity to the gas
A thickness of solid layer in gas—solid path conductivity, k./k,
[m] k.  ratio of effective bed to gas conductivities,
k.  conductive component of the effective k.jk,
thermal conductivity [Wm™'K 1] Kk,  ratio of the radiative component of the
k.  effective thermal conductivity of packed effective conductivity to the gas
bed [Wm™ 'K~ conductivity, k,/k,
k.,  effective thermal conductivity of gas—sohd v ratio of solid to gas conductivities, k/k,
path [Wm 'K & coefficient of variation of particle size
k,  gas thermal conductivity [Wm™'K '] distribution
k}  thermal conductivity of gas in a confined o Stefan—Boltzman constant [Wm 2K %
space [(Wm™ K~ ¢ effective gas film thickness in gas—solid
ky  defined by equation (4) [Wm™' K] path, [,/D,
k,  radiative thermal conductivity x radiation transfer factor
Wm-'K™"] W  shape factor derived from Ergun’s
k,  solid thermal conductivity [Wm™ 'K '] equation.

(5) conduction through the gas film near the con-
tact surfaces between adjacent particles;
(6) conduction through the gas in the void spaces.

(1) conduction through the solid phase;

(2) conduction through the contact
between neighbouring particles ;

(3) radiant transfer between adjacent solid sur-
faces;

(4) radiant transfer between neighbouring void
spaces ;

surface

A general unit cell which illustrates these models is
shown in Fig. 1. The heat flow through the cell is
divided into three parallel paths. Mechanisms 4 and
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FiG. 1. Unit cell for model of Masamune and Smith [7].

6 take place in parallel in the gas path occupying area
fraction ¢,. Mechanisms 1, 3 and 5 take place in the
gas—solid path occupying area fraction &,. Here con-
duction takes place through the gas and solid in series,
with radiant transfer occurring between the solid sur-
faces. Finally the solid—solid contact conduction path
occupies an area fraction 8. The three parallel paths
are separated by the adiabatic lines AB and CD: the
effective thermal conductivity is then given by

xe=e,<1+h”ﬂD">+1_4)(1_8‘“5)

k, N 1
vk hapD,

Pk "k
+vé. (1)

Imura and Takegoshi [4] took the two radiant heat
transfer coefficients (A, h,) as being equal and
derived a theoretical expression for them. They
assumed that the mean spacing between particle
layers, B, was unity and derived an expression for g,
based on the requirement that the unit cell volume
fraction was equal to the bed voidage. The model also
takes into account the reduction in the gas con-
ductivity at low pressures.

At very low pressures the gas thermal conductivity
is very low and the heat flow through the bed is entirely
through the contact areas between particles. This
allowed the estimation of the solid-solid contact frac-
tion, 6, from conductivity measurements over a range
of pressures and the values obtained were very small
indicating that at normal pressures, contact con-
duction makes a negligible contribution to the effec-
tive conductivity. They also estimated values of the
effective gas film thickness and correlated it against
bed voidage, ¢, and v.

2.3. The Kunii and Smith [6] model

The Kunii and Smith [6] model can also be rep-
resented by the general unit cell shown in Fig. 1,
with the modifications &, = ¢ and k¢ = k,. Because no
relation had been established between the effective
solid and gas thicknesses /, and /, and the length of
the unit cell, their expression differs from equation (1)
by its inclusion of a superfluous parameter in place of
the derived term (1 — ¢) (which they set equal to 2/3).

Fi1G. 2. Unit cell for model of Godbee and Ziegler [8].
7

The radiant heat transfer coefficients were calculated
from expressions derived by Yagi and Kunii [5] and
solid-solid contact conduction was considered neg-
ligible for atmospheric pressure conditions. Theor-
etical expressions were derived for the other par-
ameters. They estimated the heat flow in the vicinity
of a contact point using a model consisting of two
touching spheres. The calculation assumed one-
dimensional heat flow with constant linear heat flux
through the gas and solid. From a knowledge of the
number of contact points per particle effective in
transferring heat, they estimated the gas film thickness
equivalent to the resistance of the contact points. It
should be noted that this effective co-ordination num-
ber differs from the true co-ordination number (i.e.
the number of contact points per particle) because the
heat flow in the region of a contact point depends on
its orientation to the overall temperature gradient. A
correlation was derived to estimate this parameter.

2.4. The Godbee and Ziegler [8] model!

Godbee and Ziegler [8] expressed the effective ther-
mal conductivity as the sum of three component con-
ductivities representing solid—solid contact conduc-
tion, radiation between solid surfaces and conduction
through the gas and solid phases. The unit cell for
the gas—solid component is shown in Fig. 2 which
represents a cubic volume of a bed. It is constructed
by redistributing the solid within the cell into a homo-
geneous block in such a way that the effective con-
ductivity of the cell remains unaltered. The dimen-
sions of the solid section are defined in terms of a
shape factor, «, which determines how much of the
solid may be considered to be in parallel with the
surrounding gas and how much in series. The defi-
nition of « is such that the void volume of the cell
equals that of the bed. The conductivity of the unit
cell is calculated assuming one-dimensional heat
transfer but with the isotherms being parallel planes
perpendicular to the direction of heat transfer, such
as ABCD. The gas—solid component then becomes

ke 1
k= DX - @
A —s/x?) tvsjx2 T 1= De/X)

The shape factor « and the mean particle size are



598

J. S. M. BOTTERILL ef al.

Heat] Fiow

\

/'7

-

o

BN

™

AN

AN
\

1-J(1-g)

-

———

dr
"—H:*—ﬂ

| 8
‘l‘q—fxw-u—j

FiG. 3. Unit cell for model of Bauer and Schliinder [11].

calculated from the particle size distribution, assumed
log-normal, according to formulae that they give.

2.5. The Laubitz [9] and Russell [10] models

The Russell [10] model also makes the assumption
of parallel isotherms in deriving the thermal con-
ductivity of the unit cell. It differs from that of Godbee
and Ziegler [8] in that the unit cell consists of a cube
of gas containing a cube of solid. The relative dimen-
sions of the cubes are fixed by the requirement that
the unit cell voidage equals that of the bed. No pro-
vision is made for radiation, solid—solid contact con-
duction or low pressure effects. Laubitz [9] compared
the predictions of the Russell model with measure-
ments taken on beds of magnesia, zirconia and alu-
mina at temperatures up to 1200°C. The predictions
were found to be too low, but Laubitz obtained good
agreement with some materials by doubling the
Russell estimate and adding his own radiation term.

2.6. The Bauer and Schliinder [11] and Zehner [12]
models

The Bauer and Schliinder model is an extension of
an carlier model by Zehner and Schliinder [12, 13].
Zehner’s model is applicable to random packings of
uniform spheres and takes into account radiation and
pressure effects. The unit cell is shown in Fig. 3. Here
again the heat flow is divided into three paraliel paths.
The first represents conduction and radiation through
the gas filled voids and has an area fraction of
1—./(1—¢). The second path represents conduction
through the solid and gas phases with radiation
between solid surfaces and has an area fraction of
(1—0)/(1 —¢). Finally, the solid—solid conduction
path has an area fraction of 5\/ (1 —¢). By paralleling
resistances, the effective thermal conductivity becomes

k, ku k. Ok
L= (- J(—g) 2 —e){(1=8) =+
o= A==t +ya s){a 5>kg+kg}
(3)
with
ka K
E’ = kg +£Nu,g. (4)

Here k4, the effective conductivity of the void space,
is expressed as the sum of a radiative and a conductive
component, both of which are dependent on the void
space dimensions, taken as eD,,. The gas conductivity
in the void space is calculated from an expression by
Chapman and Cowling [14] to allow for the influence
of pressure. The radiation Nusselt number, Nu,, is
based on an expression by Damkaohler [15]. The area
fractions have been chosen so that the effective con-
ductivity obeys the limit

ke DC
Pllgkg_ D= 1—/(1—¢). 5)
Zehner [12] considered this expression to represent
conduction through a bed of non-conducting particles
surrounded by a conducting gas which he considered
to be analogous to diffusion in a packed bed and
expressed the limit as the ratio of the diffusion
coeflicient of the stagnant bed, D, to that of the gas,
D. This ratio can be related to the voidage, & by
the empirical expression given. The effective thermal
conductivity of the gas—solid path is calculated by
assuming constant linear heat flux in the z-direction
through the gas—solid composite and integrating over
the radius to obtain the total heat flow. For this pur-
pose the solid is considered to be bounded by the
curve
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The derivation of the gas—solid path conductivity also
allows for the influence of pressure on the conductivity
of the gas and radiant transfer between the surfaces
of the solid phase. In equation (6), F is a deformation
factor and is evaluated from the requirement that the
void fraction of the unit cell should equal the bed
voidage. Approximately

1—g\1o°
F=1.25<—8~f> . o)

It should be noted that equation (6) is not a rep-
resentation of the shape of a particle. Zehner extended
the model to packings of non-spherical, uniform sized
particles by replacing the numerical factor in equation
(7) with a shape factor, y, evaluated for spheres, cyl-
inders and broken solids from numerous experiments.

Bauer extended the Zehner model to deal with ran-
dom packings of irregular particles with a wide size
range. Equation (7) was then rewritten as

1—g\1o®

F=y <T> 90(&) ®
where g, is a distribution function characterizing the
particle size distribution. Bauer and Schliinder [11]
measured the effective conductivity of various pack-
ings up to 727°C. From experiments on binary mix-
tures of spheres, they found good agreement was
obtained using y = 1.25 and the distribution function

9o(&:) = 1+3¢&:. ®

Here ¢, is the coefficient of variation of the particle
size distribution and can be calculated from a sieve
analysis. For broken solids they found that y = 1.4.
They also showed that a mean particle size could be
used in place of the uniform sphere diameter used in
Zehner’s model.

2.7. The treatment of radiation in the unit cell models

In unit cell models, radiation is treated as a local
effect taking place between adjacent particle surfaces
and void boundary surfaces in the unit cell. Long
range effects are neglected. Vortmeyer [16] lists five
assumptions that are made by these models and those
considered in the next section :

(1) particle diameter > wavelength ;
(2) grey emitting surfaces;

(3) opaque solid;

(4) absence of free convection;

(5) AT/T « 1 across a particle layer.

In these models radiative transfer is considered in
terms of either a radiative thermal conductivity or
a heat transfer coefficient and usually evaluated by
considering the radiant exchange between surfaces in
some simplified geometry that is considered to rep-
resent best the radiant transfer in the unit cell. Some
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of the models (e.g. Godbee and Ziegler [8], and Laubitz
[9]) calculate the overall effective thermal conductivity
by adding the radiative conductivity to the conduction
component calculated from the unit cell. Other models
(Zehner [12], Bauer and Schliinder [11], Wakao and
Kato [1], Imura and Takegoshi [4], and Kunii and
Smith [6]) include the radiative conductivity (or heat
transfer.coefficient) as a resistance in the network of
resistances representing the unit cell. In these models
where a radiative resistance is considered in series
with that of solid conduction, the magnitude of the
radiation contribution will depend on the thermal
conductivity of the solid [16]. This was demonstrated
by Nusselt [17] who considered radiant exchange
between slabs of gas and solid in series.

The expressions used to calculate the radiative con-
ductivities for the various models considered are tabu-
lated in Table 1. They are given in the form of a
radiative exchange factor, y, from which the radiative
conductivity may be calculated as

k. = 40y D, T". (10)
In general y is a function of the particle surface emis-
sivity and the radiative transfer geometry assumed. The
Wakao and Kato [1] expression is based on the con-
sideration of the radiant transfer between touching
spheres as shown in Fig. 4. It is assumed that the
imaginary surfaces HH’ and II’ circumscribing the
spheres are diffusely reflective. In this way they
showed that the angle factor between surfaces HI
and H'T’ is approximately the same as that between
hemispheres AH and AH’, thus allowing the use of
a single radiative transfer factor. In this model the
interaction between radiation and conduction is com-
plicated, and so the results were presented as a plot
of k. against v with a radiation Nusselt number Nu,,
as a parameter.

The radiant heat transfer coefficient in the Zehner
model [12] is based on the Damkdhler equation [15]
as modified by Argo and Smith [18]. The geometrical
configuration consists of two parallel grey planes
separated by a particle diameter.

Yagi and Kunii [5] used separate expressions for
the radiative heat transfer coefficients through the gas
parallel path and the gas—solid path. The gas—solid
coefficient is calculated from the Argo and Smith [18]
parallel plates expression, whilst that of the gas path
is given by their own expression.

In the Imura and Takegoshi model [4], one heat
transfer coefficient was used for both parallel paths
and calculated from a relationship based on a single
radiating plate.

The Godbee and Ziegler model [8] and the Laubitz
model [9] both use radiative conductivities that are
additive. Both are functions of the voidage as well as
the emissivity. The Laubitz expression is based on
a consideration of one-dimensional radiant transfer
through a void containing solid cubical obstacles.
Reflection is neglected in its derivation.
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Table 1. Radiation exchange factor for various unit cell models

Alumina Silica

e = 0.45 e=1 e =0.37 e=1
Authors % B=0.127 B =0.095 B =0.097 B =0.065
Godbee and Ziegler 1—8_35 0.528 1.174 0.279 0.754
. 1= (1—8)* 4+ (1—g)*?
Laubitz . ,,_L%,,j), e 0.743 1.65 0.51 1.377
Imura and Takegoshi e 0.45 1.0 0.37 1.0
Wakao and Kato 2 0.478 l 3 52
Zehner ; Bauer and Schliinder ji—e 0.29 1.0 0.227 1.0
I
Kunii and Smith e -»~-—I—~ 0.582 1.0 0.609 1.0
l—¢ 2e
2B+e(1—B)

Vort e 2

ortmeyer 30 —B)—e(1—B) 0.478 1.21 0.359 1.14

+B

Kasparek —‘1’5[} 0.661 121 0.517 .14
2.8. The treatment of radiation in pseudohomogeneous d7s " .
models &= —(a+b)I+bK+aocT (1)

Apart from the unit cell models which do not allow
for the long range effects of radiation, there are a _ 9K = —(a+b)K+bI+acT*. (12)
number of models which consider the bed to be a dz

continuum for radiation and take account of these
effects. The bed is considered to be a pseudo-
homogeneous medium through which radiation can
penetrate freely and is modelled by equations which
describe the transfer of radiation through an absorb-
ing, emitting and scattering medium. A derivation of
these equations may be found in Ozisik [19]. The
equations may be written in simplified form as

<]

ec

A

FiG. 4. Wakao and Kato’s [1] model for radiation between
adjacent particles.

Here it is assumed that the medium is grey, the scat-
tering is isotropic and finally the Schuster-
Schwarzchild approximation is applied. This divides
the total radiative flux into a forward flux I and a
backward flux K, both parallel to the z-axis, hence
removing the dependence of the original equations on
direction [19]. The net radiative flux may then be
written as

g.=I—K.

The above equations were first used by Hamaker
[20] and have been obtained by Viskanta [21] on sim-
plification of a more rigorous treatment. Since the bed
is considered to be homogeneous, there is no direct
relationship between the flux parameters and the
physical properties of the packing. Churchill and co-
workers [22, 23] estimated the effective scattering and
absorption parameters b and a by measuring the
attenuation of radiation in beds of various packings.
Using approximate solutions of equations (11) and
(12) subject to boundary conditions, Chen and
Churchill [22] derived an expression for the radiant
conductivity in the interior of an optically thick bed
as

—. (13)

This expression was also obtained by Hamaker [20]
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by a different procedure. Both Chan and Tien [24]
and Vortmeyer and Kasparek [25] have established
theoretical relationships between continuous and dis-
continuous models.

Vortmeyer and Kasparek defined a layer trans-
mittance parameter, B, which represented the pro-
portion of radiation transmitted by a single layer.
They derived expressions for the flux parameters a
and b in terms of particle surface emissivity and B
[25]. An expression was also derived for the radiative
conductivity and is given in Table 1. This expression
is equivalent to equation (13) but with coefficients a
and b expressed in terms of Vortmeyer and Kasparek’s
layer transmittance. Vortmeyer and Borner [26] rep-
resented the particle layer as an opaque plate with
regularly spaced holes in it and expressed the layer
transmittance as a function of emissivity and voidage
by considering the radiant exchange between the solid
and void surfaces. Kasparck and Vortmeyer [27]
introduced a correction to the particle emissivity to
take into account reflections between adjacent par-
ticles in the same layer and obtained a modified
expression for y (see Table 1).

Vortmeyer and Kasparek [25] considered sim-
ultaneous conduction and radiation in a packed bed
using a pseudohomogeneous model. They examined
the error in the assumption that the overall effective
thermal conductivity was the sum of 2 conductive
component and the radiative component calculated
from equation (13) and concluded that it was small.
Consequently they advise that the radiative con-
ductivities estimated from their models should be
added to a conduction component to yield the overall
bed effective thermal conductivity.

3. COMPARISON BETWEEN THE
EXPERIMENTAL THERMAL CONDUCTIVITY
VALUES AND MODEL PREDICTIONS

The experimental measurements for the three bed
materials were compared with values predicted by the
models of Bauer and Schliinder [11], Zehner {12],
Godbee and Ziegler [8], Imura and Takegoshi [4],
Wakao and Kato [1], Kunii and Smith [6], Laubitz
[9] and Russell [10]. It was difficult to find suitable
data for the thermal conductivity and surface emis-
sivity of the solid particles in order to evaluate the
models.

3.1. The thermophysical data used in the model
equations

The alumina used in the experiments (Table 1 of
Part I) was 99.7% pure white synthetic « alumina.
Touloukian and DeWitt have tabulated thermal con-
ductivity [28] and emittance [29] data from numerous
sources for samples of polycrystalline alumina and
sapphire. The polycrystalline data seemed more
appropriate since polycrystalline alumina is composed
of a dense mass of crystals rather like a packed bed,
whilst sapphire refers to the single crystal. In addition,
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it is likely that individual particles in the bed will be
composed of more than one crystal. The recom-
mended curve for the thermal conductivity of 99.5%
pure, 98% dense polycrystalline alumina was used.
The emittance data is considerably scattered because
radiative properties are influenced by the condition
of the sample used. Touloukian and DeWitt have
produced a chart of the normal total emittance of
polycrystalline alumina based on an analysis of 23
experimental curves indicating a range of values for
each temperature. The values used in the calculations
were the midpoints of these ranges.

The sand used in the experiments (Table 1 of Part
I) was considered to consist of o quartz below the
phase transition temperature of 573°C, and f quartz
above. Touloukian and DeWitt {28] have collated
thermal conductivity data for crystalline quartz and
fused quartz (vitreous or amorphous). The values for
crystalline quartz are rather higher than those for
fused quartz. Since sand is crystalline, the data for
single crystal quartz was used. Crystalline quartz dis-
plays a slight degree of anisotropy, its thermal con-
ductivity parallel and perpendicular to the ¢-axis dif-
fering slightly. Calculations were therefore performed
with both the perpendicular and parallel con-
ductivities for comparison. Data is only available up
to the phase transition temperature. At higher tem-
peratures, extrapolation seems reasonable as the ther-
mal conductivity shows a k,oc 1/T dependence as
would be expected for an insulating single crystal [30].
Touloukian and DeWitt list only one emittance value
for crystalline silica, that of 0.37 taken at 750°C on a
sample of o crystobalite. This value was used through-
out the temperature range.

The gas in the void spaces of the beds was air, and
the thermal conductivity values were taken from those
tabulated by Mayhew and Rogers [31]. Some of the
conductivity and emittance values used in the cal-
culations are listed in Table 2. As would be expected
for a crystalline solid, the conductivity falls with
increasing temperature over the range investigated.
For alumina, the emittance also falls with increasing
temperature.

3.2. Estimation of the bed parameters

To evaluate the models it was necessary to estimate
certain parameters which characterize the packing of
the bed. For the simple models, only the voidage and a
mean particle size are required. Except for the Godbee
and Ziegler model, the mean size was calculated from
the sieve analyses as

n-[£2]

pi

14

and is the size used to identify the materials in this
work.

For the Godbee and Ziegler model [8] however, the
parameters describing the bed were all evaluated from
a log probability plot of the sieve size against the
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Table 2. Thermophysical property data

Thermal conductivity (Wm~ ' K1)

70 Alumina Silica |}
977 6.3 243
877 6.75 2.65

77 7.44 2.91
677 8.33 3.22
577 9.58 3.61
477 1.4 4.1
377 14.0 4.74
277 17.75 5.61

Emissivity

Silica ir Air Alumina
2.08 0.07849 0.45
2.19 0.07427 0477
2.33 0.06985 3.51
2.49 0.06520 0.552
2.69 0.06030 0.595
2.94 0.05509 0.636
3.26 0.04954
3.72 0.04357

cumulative weight fraction, according to the methods
they specify. In this case, the mean particle size is the
median, Dy, of the distribution. In the case of the
Zehner [12] and Bauer and Schliinder models [11], the
mean size was calculated from equation (14), but then
corrected by a shape factor to yield the gas path and
radiation lengths, x;, and xy, respectively. The shape
factors were derived from minimum fluidization vel-
ocity measurements using the Ergun [32] correlation.
With the exception of the models of Zehner, and
Bauer and Schliinder, all the models were evaluated
assuming point contacts and also that the pressure
was sufficiently high to have no influence on the
gas conductivity. For the Zehner, and Bauer and
Schiiinder models, the contact area was estimated using
a method described by Luikov ef af. [33], but its
contribution to the conductivity was found to be neg-
ligible. For non-spherical particles, Imura and
Takegoshi [4] suggest reducing the estimated gas path
length, ¢, by 10% and so this practice was followed
here. The values of the parameters estimated for the
Bauer and Schliinder and Godbee and Ziegler models
are shown in Table 3. The parameters of the Zehner
model are identical to those of the Bauer and
Schliinder model except that in evaluating the defor-
mation factor, F, in equation (8), g, is taken as unity.

3.3. Comparison between experimentally estimated
and predicted conductivities

The model predictions are shown together with the
experimental values in Figs. 5-7. The silica sand

Table 3. Estimated values of the parameters used in the various models

curves were calculated using parallel-axis data. The
Wakao and Kato model [1] can only be applied to a
bed with voidage close to 0.395 and therefore was not
considered appropriate for the alumina bed which had
a voidage of 0.54. It is apparent that while all the
predictions are of the right order of magnitude, they
cover a range of values. Moreover, the temperature
dependence of the effective conductivity predicted by
the models is generally far less than that determined
experimentally. Only the Laubitz model gives good
agreement with alumina but this overpredicts for the
two grades of silica sand.

4. IMPLICATIONS OF THE EXPERIMENTS
AND MODELS

4.1. The conductive and radiative components of the
effective thermal conductivity

1t is useful to consider the effective thermal con-
ductivity to be the sum of a conductive component
and a radiative component that is

ke =k +k, (15)

The conditions relating to the validity of this approach
have been discussed by Vortmeyer and Kasparek [25].
It is not, however, possible to estimate the value of
these components from experimental thermal con-
ductivity measurements without recourse to a model.
Nevertheless, by making certain assumptions it is
possible to estimate limiting values for the radiative
and conductive components. Equation (15) can be

Alumina Silica
Mean particle size, D, (um) Reference 376 410
Voidage, ¢ Godbee and Ziegler [8] 0.54 0.43 0.43
Dy (um) Godbee and Ziegler [8] 370 447.5 650
Dg, (um) Godbee and Ziegler [8] 425 508 693
Log standard deviation Godbee and Ziegler [8] 0.1386 0.1268 0.06405
Mean particle size Godbee and Ziegler [8] 374 451 651
Upper point of truncation (um) Godbee and Ziegler [8] 450 567.5 715
Lower point of truncation (um}) Godbee and Ziegler {8} 330 3221 465
Shape factor, « Godbee and Ziegler [8] 0.71 0.96 0.93
Shape factor, ¢ Bauer and Schliinder [11] 0.88 0.9 0.88
XD Bauer and Schlinder {i1] 427 456 670
X, Bauer and Schiiinder [11} 427 456 670
Deformation factor, ¥ Bauer and Schliinder {11] 1.91 327 2.94
Contact area fraction, d Bauer and Schliinder [11] 9.7x 10 8.64x 10°%  7.84x10"*
Deformation factor, F 1.17 1.92 1.90

Zehner [12]
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FiG. 5. Comparison between measured effective thermal conductivity of bed of 376 ym alumina and model
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Takegoshi [4] ; 6, Kunii and Smith [6] ; 7, Laubitz [9] ; 8, Zehner [12).

made dimensionless by dividing by the gas thermal
conductivity

(16)

Assuming that the conductive component is inde-
pendent of the radiative component, it can be shown
by dimensionless analysis that the dimensionless con-
duction component, k., for a given bed geometry is a
function of the ratio of the solid and gas thermal
conductivities, v. It is evident that x_ increases mono-
tonically with increasing v. Figure 8 shows the exper-

Ke = K.+ K,.

alumina plotted in dimensionless form. For alumina
(and silica) the value of v falls with increasing tem-
perature which suggests that the value x, will fall over
the same temperature range. However, Fig. 8 shows
that the experimental values of . increase over the
temperature range, this rise being entirely due to radi-
ant transfer. Hence, for any observed value of the
effective thermal conductivity (e.g. point P on curve
AO), the dimensionless radiative component must be
larger than the observed increase in «, that is

imental effective thermal conductivity data for the Ky > Ko— K- an
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Fig. 7. Comparison between measured effective thermal conductivity of bed of 590 um silica sand and
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Figure 8 shows that radiation makes a significant
contribution to the experimental conductivity, at least
18% at a temperature of 977°C which corresponds to
point A. Similar results are obtained for the 410 and
570 um grades of silica, that is 24.6% at 877°C and
34.5% at 877°C, respectively.

Figure 9 shows the conduction component curves
predicted by the models for the silica beds. These were
calculated by neglecting the radiation parameters in
evaluating the models. The curves in Fig. 9 apply to
both the 410 and 590 um sand because the packings
had virtually the same voidage with the consequence
that the models, which rely oun the voidage to charac-
terize the packing predicted similar values. Also the

models which take the particle size distribution into
account [8, 11, 12] gave very similar estimates. The
models generally yield conductive components with
similarly shaped, shallow sloping curves but there is
considerable variation between their absolute values.
The predictions of the Laubitz model [9] are notice-
ably higher than the other model predictions and have
a curve of steeper slope. This is because they-are
arbitrarily calculated as twice the value calculated by
the Russell model [10]. The Russeli curve is shown in
Fig. 9 and although the estimates are lower than the
rest, it has a slope of similar magnitude. Hence with
the exception of the Laubitz model, the models suggest
that the conductive component is not greatly influ-
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Fi1G. 8. The experimental effective thermal conductivity of 375 um alumina in dimensionless form ; numbered
points refer to corresponding temperatures (°C).



The effective thermal conductivity of high temperature particulate beds—II

605

o7

O-GL

6
0-3}

Effective Thermal Conductivity wWm 'K

0-2r

1

4 A
300 400 500

i 1 —l
600 700 800 900

Temperature °C

FiG. 9. The conduction component of the effective thermal conductivity of 410 um silica sand pred.icted
by various models : 2, Bauer and Schliinder [11]; 3, Godbee and Ziegler [8]; 4, Imura and Takegoshi [4] ;
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enced by temperature over the range investigated.
Comparison between the conductive component esti-
mates in Fig. 9 and the model estimates in Figs. 6 and
7 shows that the predicted radiative component is
small compared with the conductive component. This
behaviour of the models is at variance with the deduc-
tions made from the experimental data above. Some
of the models (Wakao and Kato [1], Imura and
Takegoshi [4], Zehner [12], Bauer and Schilinder {11]
predict values for the conduction component which
are greater than the experimental values at low tem-
peratures. This shows that these models overpredict
the conduction component at these temperatures. The
Bauer and Schliinder model gives higher predictions
than the Zehner model. The main difference between
these two models is the allowance for the particle
size distribution used in the Bauer and Schliinder
model. This function is evidently inapplicable to the
narrow size distributions of fine particles used in this
work. The Zehner model gives closer predictions
of the experimental values and particularly for the
alumina.

4.2. Factors affecting the behaviour of the conductive
component

In Section 3.3 it was pointed out that the conduction
component curves of some of the models disagreed
with each other and that certain models predicted
conduction component curves which were incon-
sistent with the experimental measurements.
However, most of these models have only been tested
previously against experimental measurements taken
on various packed beds over a limited range of tem-
peratures and have been found to give good results.
This would suggest that the overprediction may be

due to the failure of these models to deal with beds of
materials substantially different to those on which
they were originally tested. For example, the cor-
relations of the Imura and Takegoshi models were
derived from measurements taken on beds of uniform
spheres. In each model, the packing of the bed is
characterized by a parameter, which usually cor-
responds to a dimension in the unit cell and is ex-
pressed as a function of various bed properties such
as voidage, co-ordination number or particle size dis-
tribution. The methods used to evaluate this ‘packing
parameter’, may be empirical or theoretical. For
example, the parameter in the Imura and Takegoshi
model is derived from an empirical correlation in
terms of & and v. Figure 10 shows the effect of varying
this ‘packing parameter’ on the conductive com-
ponent predicted by the Imura and Takegoshi models.

The figure shows that for a wide variation in ¢, the
model predicts that the temperature dependence of
the conduction component is low compared with that
of the experimental results. Tt was found that all the
models exhibited this behaviour when their packing
parameters were varied. As these models have been
found to give good agreement when fitted to exper-
imental measurements taken at ambient temperature
when radiation would be negligible, this suggests that
the temperature dependence of the conduction com-
ponent is indeed low and cannot explain the high
temperature dependence of the present experimental
results which must therefore be attributed to radiative
transfer. Incidentally, two other explanations for the
high experimental temperature dependence of the
thermal conductivity, namely increasing interparticle
contact because of softening at higher temperatures
and the development of natural gas convection
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model [4] for various values of packing parameter, ¢.

through the interstices of the bed, were considered
and readily discounted [34].

4.3. Factors affecting the behaviour of the radiative
component

One possible explanation why the models con-
sistently underestimate the degree of temperature
dependence is because the emissivity values used in
the calculations may not be applicable to the samples
of alumina and silica used in the experiments since the
emissivity of a material is greatly dependent on the
condition of the sample. Consequently, the effect of
varying the particle emissivity on the predicted effec-
tive thermal conductivity was examined. Figure 11
shows the predicted effective thermal conductivity
curves obtained from the Godbee and Ziegler model
for the 410 um sand assuming three possible cases:

no radiation at all; the emissivity is given by the
reported values ; the particles are black (e = 1). As the
emissivity is increased, the temperature dependence of
the model curve increases but even with the maximum
emissivity value of unity, the temperature dependence
never attains that experimentally observed.

Although there is doubt about the accuracy of the
published values for the emissivities of the test
materials they would not be as high as one. Whilst
surface roughness can considerably increase the effec-
tive emissivity of a metallic surface it has only a limited
effect on non-metals. This is because radiation is able
to penetrate some way below the surface layer of
atoms in non-metals before being absorbed or
reflected {29]. Consequently it is evident that the
models predict a considerably lower radiation con-
tribution than was found.
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FiGg. 11. Comparison between the effective thermal conductivity for a bed of 410 um silica sand and
predictions of the Godbee and Ziegler model [8]; 1, experimental; 2, e »0; 3, e50.37;4, e—>1; 5,
e — 0 and silica conductivity perpendicular to c-axis.
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The Godbee and Ziegler model is used to illustrate
this point because it gives a conductive component
that is consistent with the experimental results and a
radiative component which is generally larger than
those of the other unit cell models. The radiative com-
ponents of the different models can be compared by
adopting the procedure of Vortmeyer [16] and
expressing the various radiative conductivities in the
form

(10)

The y values can then be calculated for each model
and compared as in Table 1 in that the higher the
value, the higher will be the radiative conductivity.
For models where the radiative component is additive
(Godbee and Ziegler, Imura and Takegoshi), the radi-
ation component will equal the radiative conductivity
given by equation (10) but for the non-additive
models the radiative component is less than &, and
dependent on the solid conductivity. Table 1 suggests
that only the Laubitz model gives a higher radiative
component than that of Godbee and Ziegler. This
is because the Laubitz expression neglects reflections
between surfaces in its derivation. As noted earlier,
Laubitz obtained good agreement with some of the
materials he tested by doubling the conduction com-
ponent predicted by Russell’s equation and adding a
radiative component. Doubling the conductive com-
ponent doubles its temperature dependence and as the
Laubitz radiation expression gives high results, he was
able to reproduce the high temperature dependence
of his measurements using reported emissivities. This
procedure seems arbitrary and our experiments show
that it overpredicts for silica. It follows that if the
Godbee and Ziegler model cannot reproduce the tem-
perature dependence of the experimental results then
none of the other unit cell models can.

The table also includes the y values calculated for
two pseudohomogeneous models ; those of Vortmeyer
[16] and Kasparek and Vortmeyer [27] (see Section
2.8). The y values given by these models are higher
than those of the unit cell models but are still not high
enough to predict the temperature dependence of the
experimental results.

Figure 12 shows the effect of increasing the value
of the layer transmittance factor, B, beyond that pre-
dicted by Vortmeyer. The calculations were per-
formed using the conductive component predicted by
the Godbee and Ziegler model for 410 ym sand and
reported emissivities. As B is increased the tem-
perature dependence of the curve increases. At a value
of B = 0.54 the slope of the model curve is similar to
the experimental curve. Also the two curves are
roughly coincident suggesting that the estimate of the
conductive component is also quite good as well. A
similar procedure was adopted for the 376 ym alumina
and 590 um sand giving rise to values for B = 0.55
and 0.54, respectively. The y values for the three beds
are 1.62, 1.69 and 1.73, respectively. In the case of
alumina, the predicted curve was not coincident with

k. = 4oy D,T".
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the experimental one as for the 410 ym sand. Conse-
quently the value of B was chosen which produced a
curve that was approximately parallel to the exper-
imental one. The justification for this procedure is
that it is the temperature dependence (or slope) that
should be compared; the discrepancy is due to an
underprediction of the conductive component for
alumina by the Godbee and Ziegler model. As
explained in the previous section, an incorrect pre-
diction of the conductive component has little effect
on the overall temperature dependence. The higher
estimated values of B are consistent with the trans-
mittance of the bed being far higher than the Vort-
meyer model predicts. This is to be expected if the
particles are partially transparent to radiation and not
opaque as the unit cell and the pseudohomogeneous
models assume. Further incidental evidence that this
is likely to be so is the fact that heat transfer to fouled
boiler tubes is higher than would be accounted for if
the deposit were completely opaque to radiation {35].
The considerable transmittance data collated by
Touloukian and DeWitt [29] suggests that alumina
has a normal spectral transmittance of about 0.8 in
the 1-7 um wavelength range [36] while for silica
values of about 0.95 have been observed in the 0.2—4
um wavelength range [37]. As noted above regarding
the values of emissivity for use in the model predic-
tions, there will be similar uncertainty in applying the
values of transmissivity to the experimental samples
but, using these data, some estimates were made for
the normal total transmittances of alumina and silica
at 904°C [34]. These estimates assumed a black body
distribution ; a transmittance of zero for wavelengths
where data was unavailable ; that the normal spectral
transmittance was independent of temperature. The
data show that the latter assumption is reasonable for
alumina. The calculated normal total transmittances
were 0.29-0.36 for 0.254 mm thick samples of poly-
crystalline alumina and 0.56 for a single crystal
sample. For a 1.3 mm thick single crystal of silica, a
value of 0.54 was obtained. The two samples of silica
gave very similar values of y and, as they only differ
in their particle sizes, this suggests that equation (10)
adequately represents the influence of particle size
on the radiative component. Although transmittance
does decrease with increasing sample thickness, the
variation is not marked. For these materials and tem-
perature ranges, the normal total transmittance
increases with increasing temperature as the peak of
the black body radiation distribution is shifted to
the lower wavelengths where alumina and silica are
transparent. This increasing transmittance is therefore
suggested to be the cause of the strong temperature
dependence of the bed’s effective conductivity.

5. CONCLUSIONS

Each of the tested models for the prediction of the
effective thermal conductivity of static packed beds at
temperatures up to 950°C gave a different degree of
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F1G. 12. Estimate of effect of transmittance number, B, for a bed of 410 um silica sand: I, experimental ;
2,B=045;3,B=05;4,B=0.55;5, B=0.6.

temperature dependence. Although their predictions
were generally within an order of magnitude of meas-
ured effective conductivities for beds of 376 ym alum-
ina and 410 and 590 um silica sand, none could predict
the high degree of temperature dependence observed.
Their inadequacy is attributed to their treatment of
the bed particles as opaque to radiation whereas alu-
mina and silica do transmit certain frequencies.

Deficiencies in the prediction of the conductive
component by some models is attributable to their
inability to characterize the effects of particle shape
and size distribution.

The Godbee and Ziegler {8] and Kunii and Smith [6]
models gave reasonable predictions of the conductive
component of the silica beds at the lower temperatures
for which radiant transfer is negligible.
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CONDUCTIVITE THERMIQUE EFFECTIVE DES LITS PARTICULAIRES A HAUTE
TEMPERATURE—II. PREDICTIONS DES MODELES ET VALEURS EXPERIMENTALES

Résumé—On passe en revue plusieurs modéles connus, du type a la fois cellule unitaire et pseudohomogéne,
pour illustrer les approches différentes dans la modélisation de la conductivité thermique effective. Leurs
prédictions sont comparées avec des valeurs expérimentales obtenues pour des lits fixes d’alumine et de
sable, dans le domaine de température de 400 a 950°C. Aucun modele ne prédit convenablement aux
températures élevées. Ceci est attribué a I’hypotheése que les particules sont opaques au rayonnement tandis
que l'alumine et la silice sont semi-transparentes. Les déficiences de quelques modéles sont atribuées a
I'inaptitude a caractériser les effets de la forme de la particule et de la distribution en taille. Les modeles
de Godbee at Ziegler (J. Appl. Phys. 37, 55 (1966)) et Kunii et Smith (4.1.Ch.E. JI 6, 71 (1960)) donnet
des previsions raisonnables pour la composante conductive des lits de silice aux températures faibles pour
lesquelles le transfert radiatif est négligeable.

DIE EFFEKTIVE WARMELEITFAHIGKEIT VON SCHUTTUNGEN BEI HOHEN
TEMPERATUREN—II. MODELL

Zusammenfassung—Fs wird ein Uberblick iiber verdffentlichte Modelle—sowoh! von Einheitszellen als
auch Pseudohomogenitit ausgehend—gegeben, um die unterschiedlichen Méglichkeiten zur Modellierung
der effektiven Warmeleitfahigkeit zu illustrieren. Daraus resultierende Werte werden mit denen verglichen,
die fiir Schiittungen von Aluminium bzw. Sand im Temperaturbereich von 400 bis 950°C experimentell
bestimmt wurden. Keines der Modelle beschreibt die beobachtete hohe Temperaturabhéngigkeit. Die
Ursache fiir dieses Unvermégen wird darin vermutet, daB die Partikel als opak angenommen werden,
wihrend sowohl Aluminium als auch Silizium teilweise transparent sind. Méngel einiger Modelle in der
Beschreibung der leitenden Komponente werden der Unfahigkeit zur Beriicksichtigung des Einflusses von
Partikelform und -gré8enverteilung zugeschrieben. Die Modelle von Godbee und Ziegler (J. Appl. Phys.
37, 55 (1966)) und Kunii und Smith (4.I.Ch.E. JI 6, 71 (1960)) lieferten eine brauchbare Beschreibung
der leitenden Komponente von Sandschiittungen bei tieferen Temperaturen, wo der Strahlungsanteil
vernachldssigbar ist.



