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Abstract-A range of the published models, both unit cell and pseudohomogeneous chosen to illustrate 
the different approaches to modelling effective thermal conductivity, are reviewed. Their predictions are 
compared with experimental values obtained for packed beds of alumina and sand within the temperature 
range from 400 to 950°C. None predicts the high degree of temperature dependence observed. Their 
inadequacy is attributed to the assumption that the particles are opaque to radiation whereas both alumina 
and silica are partially transmissive. Deficiencies in the prediction of the conductive component by some 
models is attributed to their inability to characterize the effects of particle shape and size distribution. The 
Godbee and Ziegler (J. Appl. Phys. 37,55 (1966)) and Kunii and Smith (A.Z.Ch.E. J16,71 (1960)) models 
gave reasonable predictions for the conductive component of the silica beds at the lower temperatures for 

which radiant transfer is negligible. 

1. INTRODUCTION 

PART I of this paper reports measured effective 
thermal conductivities of packed beds of sand and 
alumina at temperatures up to 950°C. A very strong 
temperature dependence was found and the impli- 
cations of this is discussed in relation to the pre- 
dictions of a range of models for static bed con- 
ductivities. It is notable that although the models, 
which are briefly reviewed, differ markedly between 
themselves, they all give predictions within a factor of 
two of each other but none predicts the degree of 
temperature dependence found. 

2. PACKED BED HEAT TRANSFER MODELS 

Precise prediction of the effective thermal con- 
ductivity of a granular bed would require a knowledge 
of the shape, size, location and conductivity of each 
particle and their interaction. This is difficult for a 
regular array of particles and generally not feasible 
for a randomly packed bed so the usual approach to 
the problem has been to represent the bed or part of 
it by a geometrically simplified unit cell and to cal- 
culate the conductivity of this representative unit. 
However, the conductivity of the unit cell may only 
approximate to that of the bed and the unit cell 
approach cannot take into account the long range 
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effect of radiation. When allowance needs to be made 
for these, resort is made to pseudohomogeneous 
models. 

2.1. The Wakao and Kuto [l] model 

Wakao and Kato [l] calculated the effective thermal 
conductivity of an orthorhombic array of uniform 
spheres (e = 0.395) using a relaxation technique and 
allowing for three-dimensional heat transfer, a finite 
contact area between adjacent spheres and radiation. 
The problem was simplified to the calculation of the 
profile around a single sphere. Radiant transfer was 
assumed to take place in one dimension between 
adjacent solid surfaces and also between void surfaces 
within the unit cell. By considering the view factors 
between these surfaces they evaluated an overall 
radiant heat transfer coefficient which was then in- 
corporated in the relaxation network. They also per- 
formed calculations for a cubic array (E = 0.476) and 
obtained good agreement with the earlier calculations 
of Deissler and Boegli [2]. Wakao and Vortmeyer 
[3] have extended this model to take account of low 
pressure conditions causing a reduction in the thermal 
conductivity of the gas in the voids. 

2.2. The Zmura and Takegoshi [4] model 

This model is a variant of a number of unit cell 
models, namely those of Yagi and Kunii [5], Kunii 
and Smith [6] and Masamune and Smith [7], which 
represent the heat flow in the bed by a network of gas 
and solid resistances. The following mechanisms are 
considered to take place : 
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NOMENCLATURE 

absorption cross-section per unit 
volume of bed [m-‘] 
backscattering cross-section per unit 
volume of bed [m-l] 
Vortmeyer’s layer transmittance 
mean sieve spacing for the ith sieve 
fraction [m] 
diffusion coefficient of the gas phase 
[m’s_-‘J 
effective diffusion coefficient of the 
stagnant packing [m” s-‘1 
mean particle size [m] 
median particle size [m] 
particle weight fraction at a cumulative 
weight fraction of 84% [m] 
particle emissivity 
deformation factor in the Zehner, and 
Bauer and Schiiinder models 
~st~bution for characterizing the particle 
size distribution in the Batter and 
Schliinder model 
radiative heat transfer coefficient 

IWm--‘K~-‘] 
radiative heat transfer coefficient in the 
gas-solid path [W mm2 K- ‘1 
radiative heat transfer coefficient in the gas 
path [W rn-* K-‘1 
forward component of radiative flux 
w rn--“I 
mean distance between centres of adjacent 
particles in direction of heat transfer 

b-4 
gas film thickness in gas-solid path [m] 
thickness of solid layer in gas-solid path 

[ml 
conductive component of the effective 
thermal conductivity wrn-’ IS-‘] 
effective thermal conductivity of packed 
bed [W m-’ K-‘1 
effective thermal conductivity of gas-solid 
path [W m-’ K-‘] 
gas thermal conductivity [W me-’ Km ‘1 
thermal conductivity of gas in a confined 
space yW m-’ K-‘1 
defined by equation (4) [W m-’ K’] 
radiative thermal conductivity 
[Wm-‘K-‘1 
solid thermal conductivity [W m-- ’ K-- ‘1 

backward component of radiative flux 
[Wm-‘1 
weight fraction of the ith sieve fraction 
number of sieve fractions 
radiative Nusselt number based on gas 
conductivity, ~,~~~k~ 
radiation Nusselt number based on solid 
conductivity, h,DJk, 
radiant flux [W m l] 
heat Sow plvl 
radial coordinate [m] 
cross-sectional area of gas-solid path in 
Godbee and Ziegler model [m’] 
temperature [K] 
effective gas path length in Bauer and 
Schhinder model [m] 
effective radiation length [m] 
length of side in Godbee and Ziegter 
model [m] 
axial coordinate [ml. 

Greek symbols 
Godbee and Ziegler shape factor 
dimensionless mean particle spacing in the 
direction of heat transfer, Id/D, 
Bauer and Schliinder shape factor 
area fraction of the solid-solid contact 
conduction path 
bed voidage 
gas path area fraction 
gas-solid path area fraction 
ratio of the conductive component of the 
effective conductivity to the gas 
conductivity, kc/k, 
ratio of effective bed to gas conductivities, 

k,lk, 
ratio of the radiative component of the 
effective conductivity to the gas 
conductivity, k,/k, 
ratio of solid to gas conductivities, k,/k, 
coefficient of variation of particle size 
distribution 
Stefan-Boltzman constant [W m 2K--4] 
effective gas film thickness in gas-solid 
path, i,/D, 
radiation transfer factor 
shape factor derived from Ergun’s 
equation. 

(I) conduction through the solid phase; (5) conduction through the gas film near the con- 
(2) conduction through the contact surface tact surfaces between adjacent partides : 

between neighbouring particles ; (6) conduction through the gas in the void spaces. 
(3) radiant transfer between adjacent solid sur- 

faces ; A general unit cell which illustrates these models is 
(4) radiant transfer between neighbou~ng void shown in Fig. 1. The heat flow through the cell is 

spaces ; divided into three parallel paths. Mechanisms 4 and 
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FIG. 1. Unit cell for model of Masamune and Smith [7]. 

6 take place in parallel in the gas path occupying area 
fraction E,. Mechanisms 1, 3 and 5 take place in the 
gas-solid path occupying area fraction e2. Here con- 
duction takes place through the gas and solid in series, 
with radiant transfer occurring between the solid sur- 
faces. Finally the solid-solid contact conduction path 
occupies an area fraction 6. The three parallel paths 
are separated by the adiabatic lines AB and CD : the 
effective thermal conductivity is then given by 

Imura and Takegoshi [4] took the two radiant heat 
transfer coefficients (h,,h,) as being equal and 
derived a theoretical expression for them. They 
assumed that the mean spacing between particle 
layers, /I, was unity and derived an expression for a,, 
based on the requirement that the unit cell volume 
fraction was equal to the bed voidage. The model also 
takes into account the reduction in the gas con- 
ductivity at low pressures. 

At very low pressures the gas thermal conductivity 
is very low and the heat flow through the bed is entirely 
through the contact areas between particles. This 
allowed the estimation of the solid-solid contact frac- 
tion, 6, from conductivity measurements over a range 
of pressures and the values obtained were very small 
indicating that at normal pressures, contact con- 
duction makes a negligible contribution to the effec- 
tive conductivity. They also estimated values of the 
effective gas film thickness and correlated it against 
bed voidage, E, and v. 

2.3. The Kunii and Smith [6] model 
The Kunii and Smith [6] model can also be rep- 

resented by the general unit cell shown in Fig. 1, 
with the modifications E, = E and k: = k,. Because no 
relation had been established between the effective 
solid and gas thicknesses 1, and Z, and the length of 
the unit cell, their expression differs from equation (1) 
by its inclusion of a superfluous parameter in place of 
the derived term /I( I- 4) (which they set equal to 2/3). 

FIG. 2. Unit cell for model of Godbee and Ziegler [S]. 
,/’ 

The radiant heat transfer coefficients were calculated 
from expressions derived by Yagi and Kunii [5] and 
solid-solid contact conduction was considered neg- 
ligible for atmospheric pressure conditions. Theor- 
etical expressions were derived for the other par- 
ameters. They estimated the heat flow in the vicinity 
of a contact point using a model consisting of two 
touching spheres. The calculation assumed one- 
dimensional heat flow with constant linear heat flux 
through the gas and solid. From a knowledge of the 
number of contact points per particle effective in 
transferring heat, they estimated the gas film thickness 
equivalent to the resistance of the contact points. It 
should be noted that this effective co-ordination num- 
ber differs from the true co-ordination number (i.e. 
the number of contact points per particle) because the 
heat flow in the region of a contact point depends on 
its orientation to the overall temperature gradient. A 
correlation was derived to estimate this parameter. 

2.4. The Godbee and Ziegler [S] model 
Godbee and Ziegler [8] expressed the effective ther- 

mal conductivity as the sum of three component con- 
ductivities representing solid-solid contact conduc- 
tion, radiation between solid surfaces and conduction 
through the gas and solid phases. The unit cell for 
the gas-solid component is shown in Fig. 2 which 
represents a cubic volume of a bed. It is constructed 
by redistributing the solid within the cell into a homo- 
geneous block in such a way that the effective con- 
ductivity of the cell remains unaltered. The dimen- 
sions of the solid section are defined in terms of a 
shape factor, u, which determines how much of the 
solid may be considered to be in parallel with the 
surrounding gas and how much in series. The defi- 
nition of CI is such that the void volume of the cell 
equals that of the bed. The conductivity of the unit 
cell is calculated assuming one-dimensional heat 
transfer but with the isotherms being parallel planes 
perpendicular to the direction of heat transfer, such 
as ABCD. The gas-solid component then becomes 

k:_ 1 

k, - DplX (2) 

(1 -S/X2)+vS/X2 +(l -Dp’X) 

The shape factor tl and the mean particle size are 
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FIG. 3. Unit cell for model of Bauer and Schliinder [l 11. 

calculated from the particle size distribution, assumed 
log-normal, according to formulae that they give. 

2.5. The Laubitz [9] and Russell [lo] models 
The Russell [lo] model also makes the assumption 

of parallel isotherms in deriving the thermal con- 
ductivity of the unit cell. It differs from that of Godbee 
and Ziegler [8] in that the unit cell consists of a cube 
of gas containing a cube of solid. The relative dimen- 
sions of the cubes are fixed by the requirement that 
the unit cell voidage equals that of the bed. No pro- 
vision is made for radiation, solid-solid contact con- 
duction or low pressure effects. Laubitz [9] compared 
the predictions of the Russell model with measure- 
ments taken on beds of magnesia, zirconia and alu- 
mina at temperatures up to 1200°C. The predictions 
were found to be too low, but Laubitz obtained good 
agreement with some materials by doubling the 
Russell estimate and adding his own radiation term. 

2.6. The Bauer and Schliinder [l l] and Zehner [ 121 
models 

The Bauer and Schliinder model is an extension of 
an earlier model by Zehner and Schltinder [12, 131. 
Zehner’s model is applicable to random packings of 
uniform spheres and takes into account radiation and 
pressure effects. The unit cell is shown in Fig. 3. Here 
again the heat flow is divided into three parallel paths. 
The first represents conduction and radiation through 
the gas filled voids and has an area fraction of 
1 -,,/(l -a). The second path represents conduction 
through the solid and gas phases with radiation 
between solid surfaces and has an area fraction of 
(1 - 8)m. Finally, the solid-solid conduction 
path has an area fraction of S,/( 1 -E). By paralleling 
resistances, the effective thermal conductivity becomes 

kc 
k~ = (l-J(l-_E))~+.j(l-i:) 

g 8 

with 

k, k; 
k, = k, +E Nu,,. 

Here k,, the effective conductivity of the void space, 
is expressed as the sum of a radiative and a conductive 
component, both of which are dependent on the void 
space dimensions, taken as EL&,. The gas conductivity 
in the void space is calculated from an expression by 
Chapman and Cowling [ 141 to allow for the influence 
of pressure. The radiation Nusselt number, Nu,,, is 
based on an expression by Damkohler [ 151. The area 
fractions have been chosen so that the effective con- 
ductivity obeys the limit 

&+ l-J(l-E). 
8 

Zehner [ 121 considered this expression to represent 
conduction through a bed of non-conducting particles 
surrounded by a conducting gas which he considered 
to be analogous to diffusion in a packed bed and 
expressed the limit as the ratio of the diffusion 
coefficient of the stagnant bed, D,, to that of the gas, 
D. This ratio can be related to the voidage, E, by 
the empirical expression given. The effective thermal 
conductivity of the gas-solid path is calculated by 
assuming constant linear heat flux in the z-direction 
through the gas-solid composite and integrating over 
the radius to obtain the total heat flow. For this pur- 
pose the solid is considered to be bounded by the 
curve 
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The derivation of the gas-solid path conductivity also 
allows for the influence of pressure on the conductivity 
of the gas and radiant transfer between the surfaces 
of the solid phase. In equation (6), F is a deformation 
factor and is evaluated from the requirement that the 
void fraction of the unit cell should equal the bed 
voidage. Approximately 

It should be noted that equation (6) is not a rep- 
resentation of the shape of a particle. Zehner extended 
the model to packings of non-spherical, uniform sized 
particles by replacing the numerical factor in equation 
(7) with a shape factor, y, evaluated for spheres, cyl- 
inders and broken solids from numerous experiments. 

Bauer extended the Zehner model to deal with ran- 
dom packings of irregular particles with a wide size 
range. Equation (7) was then rewritten as 

so(5J 

where go is a distribution function characterizing the 
particle size distribution. Bauer and Schhinder [l l] 
measured the effective conductivity of various pack- 
ings up to 727°C. From experiments on binary mix- 
tures of spheres, they found good agreement was 
obtained using y = 1.25 and the distribution function 

so(&) = 1+351. (9) 

Here [, is the coefficient of variation of the particle 
size distribution and can be calculated from a sieve 
analysis. For broken solids they found that y = 1.4. 
They also showed that a mean particle size could be 
used in place of the uniform sphere diameter used in 
Zehner’s model. 

2.7. The treatment of radiation in the unit cell models 
In unit cell models, radiation is treated as a local 

effect taking place between adjacent particle surfaces 
and void boundary surfaces in the unit cell. Long 
range effects are neglected. Vortmeyer [16] lists five 
assumptions that are made by these models and those 
considered in the next section : 

( 1) particle diameter >> wavelength ; 
(2) grey emitting surfaces ; 
(3) opaque solid ; 
(4) absence of free convection ; 
(5) AT/T << 1 across a particle layer. 

In these models radiative transfer is considered in 
terms of either a radiative thermal conductivity or 
a heat transfer coefficient and usually evaluated by 
considering the radiant exchange between surfaces in 
some simplified geometry that is considered to rep- 
resent best the radiant transfer in the unit cell. Some 

of the models (e.g. Godbee and Ziegler [8], and Laubitz 
[9]) calculate the overall effective thermal conductivity 
by adding the radiative conductivity to the conduction 
component calculated from the unit cell. Other models 
(Zehner [12], Bauer and Schliinder [l 11, Wakao and 
Kato [l], Imura and Takegoshi [4], and Kunii and 
Smith [6]) include the radiative conductivity (or heat 
transfer coefficient) as a resistance in the network of 
resistances representing the unit cell. In these models 
where a radiative resistance is considered in series 
with that of solid conduction, the magnitude of the 
radiation contribution will depend on the thermal 
conductivity of the solid [ 161. This was demonstrated 
by Nusselt [17] who considered radiant exchange 
between slabs of gas and solid in series. 

The expressions used to calculate the radiative con- 
ductivities for the various models considered are tabu- 
lated in Table 1. They are given in the form of a 
radiative exchange factor, x, from which the radiative 
conductivity may be calculated as 

k, = 4ay_D,T3. (10) 

In general x is a function of the particle surface emis- 
sivity and the radiative transfer geometry assumed. The 
Wakao and Kato [l] expression is based on the con- 
sideration of the radiant transfer between touching 
spheres as shown in Fig. 4. It is assumed that the 
imaginary surfaces HH’ and II’ circumscribing the 
spheres are diffusely reflective. In this way they 
showed that the angle factor between surfaces HI 
and H’I’ is approximately the same as that between 
hemispheres AH and AH’, thus allowing the use of 
a single radiative transfer factor. In this model the 
interaction between radiation and conduction is com- 
plicated, and so the results were presented as a plot 
of rc, against v with a radiation Nusselt number Nu, 
as a parameter. 

The radiant heat transfer coefficient in the Zehner 
model [12] is based on the Damkiihler equation [15] 
as modified by Argo and Smith [18]. The geometrical 
configuration consists of two parallel grey planes 
separated by a particle diameter. 

Yagi and Kunii [5] used separate expressions for 
the radiative heat transfer coefficients through the gas 
parallel path and the gas-solid path. The gas-solid 
coefficient is calculated from the Argo and Smith [ 181 
parallel plates expression, whilst that of the gas path 
is given by their own expression. 

In the Imura and Takegoshi model (41, one heat 
transfer coefficient was used for both parallel paths 
and calculated from a relationship based on a single 
radiating plate. 

The Godbee and Ziegler model [8] and the Laubitz 
model [9] both use radiative conductivities that are 
additive. Both are functions of the voidage as well as 
the emissivity. The Laubitz expression is based on 
a consideration of one-dimensional radiant transfer 
through a void containing solid cubical obstacles. 
Reflection is neglected in its derivation. 



600 J. S. M. BOTTERILL ef al. 

Table 1. Radiation exchange factor for various unit cell models 

Authors 

Godbee and Ziegler 

X 

EC 
l--B 

Laubitz 
I -(l -Q’)+(l -E)4’< 

l--E 
e 

Imura and Takegoshi e 

Wakao and Kato 
2r 

2 - 0.264e 

Zehner ; Bauer and Schliinder 
P 

~~~ 
2-r 

Kunii and Smith 

Vortmeyer 

Kdsparek 

2B+e(l -B) 
2(1 -B)-e(l--B) 

e+B 
1-B 

2.8. The treatment oj’radiation inpseudohomogeneous dl 

models 
- = -(a+b)l+hK+aaT4 
dz 

Apart from the unit cell models which do not allow 
for the long range effects of radiation, there are a 
number of models which consider the bed to be a 

continuum for radiation and take account of these 
effects. The bed is considered to be a pseudo- 
homogeneous medium through which radiation can 
penetrate freely and is modelled by equations which 
describe the transfer of radiation through an absorb- 
ing, emitting and scattering medium. A derivation of 

these equations may be found in &sik [19]. The 
equations may be written in simplified form as 

dK 
- dz -(a+b)K+hZ+acrT4 

Here it is assumed that the medium is grey, the scat- 
tering is isotropic and finally the Schuster- 

Schwarzchild approximation is applied. This divides 
the total radiative flux into a forward flux I and a 
backward flux K, both parallel to the z-axis, hence 
removing the dependence of the original equations on 
direction [19]. The net radiative flux may then be 
written as 

I' 

qr -I I 
H 

9- 
ec 

FIG. 4. Wakao and Kato’s [l] model for radiation between 
adjacent particles. 

Alumina Silica 
r = 0.45 e=l e = 0.37 
B = 0.127 B = 0.095 5 = 0.097 

0.528 1.174 0.279 

0.743 I .65 0.51 

0.45 I .o 0.37 

0.478 I.152 0.388 

0.29 1.0 0.227 

0.582 1 .o 0.609 

0.478 1.21 0.359 

0.661 1.21 0.511 

(’ z 1 

B = 0.065 

0.754 

1.377 

I.0 

I.152 

I.0 

1 .O 

1.14 

1.14 

(111 

(12) 

q, = I-K. 

The above equations were first used by Hamaker 
[20] and have been obtained by Viskanta [21] on sim- 
plification of a more rigorous treatment. Since the bed 
is considered to be homogeneous, there is no direct 
relationship between the flux parameters and the 
physical properties of the packing. Churchill and co- 
workers [22, 231 estimated the effective scattering and 
absorption parameters b and a by measuring the 
attenuation of radiation in beds of various packings. 
Using approximate solutions of equations (11) and 
(12) subject to boundary conditions, Chen and 
Churchill [22] derived an expression for the radiant 
conductivity in the interior of an optically thick bed 

as 

8OT’ 
k, = a+2b, (13) 

This expression was also obtained by Hamaker [20] 
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by a different procedure. Both Chan and Tien [24] 
and Vortmeyer and Kasparek [25] have established 
theoretical relationships between continuous and dis- 
continuous models. 

Vortmeyer and Kasparek defined a layer trans- 
mittance parameter, B, which represented the pro- 
portion of radiation transmitted by a single layer. 
They derived expressions for the flux parameters a 
and b in terms of particle surface emissivity and B 
[25]. An expression was also derived for the radiative 
conductivity and is given in Table I. This expression 
is equivalent to equation (13) but with coefficients a 
and b expressed in terms of Vortmeyer and Kasparek’s 
layer transmittan~. Vortmeyer and Biirner 1261 rep- 
resented the particle layer as an opaque plate with 
regularly spaced holes in it and expressed the layer 
transmittance as a function of emissivity and voidage 
by considering the radiant exchange between the solid 
and void surfaces. Kasparek and Vortmeyer [27] 
introduced a correction to the particle emissivity to 
take into account reflections between adjacent par- 
ticles in the same layer and obtained a modified 
expression for x (see Table 1). 

Vortmeyer and Kasparek [25] considered sim- 
ultaneous conduction and radiation in a packed bed 
using a pseudohomogeneous model. They examined 
the error in the assumption that the overall effective 
thermal conductivity was the sum of a conductive 
component and the radiative component calculated 
from equation (13) and concluded that it was small. 
Consequently they advise that the radiative con- 
ductivities estimated from their models should be 
added to a conduction component to yield the overall 
bed effective thermal conductivity. 

3. COMPARISON BEiWEEN THE 
EXPERIMENTAL THERMAL CONDUCTIVI~ 

VALUES AND MODEL PREDICTIONS 

The experimental measurements for the three bed 
materials were compared with values predicted by the 
models of Bauer and Schliinder [Ill, Zehner [12], 
Godbee and Ziegler [8], Imura and Takegoshi [4], 
Wakao and Kato [1], Kunii and Smith [6], Laubitz 
[9] and Russell [lo]. It was difficult to find suitable 
data for the thermal conductivity and surface emis- 
sivity of the solid particles in order to evaluate the 
models. 

3.1. The thermophysica~ data used in the model 
equations 

The alumina used in the experiments (Table 1 of 
Part I) was 99.7% pure white synthetic CI alumina. 
Touloukian and Dewitt have tabulated thermal con- 
ductivity [28] and emittance [29] data from numerous 
sources for samples of polycrystalline alumina and 
sapphire. The polycrystalline data seemed more 
appropriate since polycrystalline alumina is composed 
of a dense mass of crystals rather like a packed bed, 
whilst sapphire refers to the single crystal. In addition, 

it is likely that indj~dual particles in the bed will be 
composed of more than one crystal. The recom- 
mended curve for the thermal conductivity of 99.5% 
pure, 98% dense polycrystalline alumina was used. 
The emittance data is considerably scattered because 
radiative properties are influenced by the condition 
of the sample &,ed. Touloukian and Dewitt have 
produced a chart of the normal total emittance of 
polycrystalline alumina based on an analysis of 23 
experimental curves indicating a range of values for 
each temperature. The values used in the calculations 
were the midpoints of these ranges. 

The sand used in the ex~~ments (Table 1 of Part 
I) was considered to consist of a quartz below the 
phase transition temperature of 573”C, and fl quartz 
above. Touloukian and Dewitt [28] have collated 
thermal conductivity data for crystalline quartz and 
fused quartz (vitreous or amorphous). The values for 
crystalline quartz are rather higher than those for 
fused quartz. Since sand is crystalline, the data for 
single crystal quartz was used. Crystalline quartz dis- 
plays a slight degree of anisotropy, its thermal con- 
ductivity parallel and perpendicular to the c-axis dif- 
fering slightly. Calculations were therefore performed 
with both the ~~endicular and parallel con- 
ductivities for compa~son. Data is only available up 
to the phase transition temperature. At higher tem- 
peratures, extrapolation seems reasonable as the ther- 
mal conductivity shows a k, a l/T dependence as 
would be expected for an insulating single crystal [30]. 
Touloukian and Dewitt list only one emittance value 
for crystalline silica, that of 0.37 taken at 750°C on a 
sample of a crystobalite. This value was used through- 
out the temperature range. 

The gas in the void spaces of the beds was air, and 
the thermal conductivity values were taken from those 
tabulated by Mayhew and Rogers PI]. Some of the 
conductivity and emittance values used in the cal- 
culations are listed in Table 2. As would be expected 
for a crystalline solid, the conductivity falls with 
increasing temperature over the range investigated. 
For alumina, the emittance also falls with increasing 
temperature. 

3.2. Estimation of the bedparameters 
To evaluate the models it was necessary to estimate 

certain parameters which characterize the packing of 
the bed. For the simple models, only the voidage and a 
mean particle size are required. Except for the Godbee 
and Ziegler model, the mean size was calculated from 
the sieve analyses as 

and is the size used to identify the materials in this 
work. 

For the Godbee and Ziegler model [8] however, the 
parameters describing the bed were all evaluated from 
a log probability plot of the sieve size against the 



602 J. s. M. BrnR1LL et Cal. 

Table 2. Thermophysical property data 
--~~~-.----~~ .~---.- ----- ------.. “” ._~_~ 

Thermal conductivity (W rn- ’ K- ‘) 
T (“C) Alumina Silica 1; 

_I_--_.___.-~~~__.___ ~~ _. 
977 6.3 2.43 
877 6.75 2.65 
777 7.44 2.91 
677 8.33 3.22 
571 9.58 3.61 
477 11.4 4.1 
377 14.0 4.74 
277 17.75 5.61 

Siiica ir Air 

2.08 0.07849 
2.19 0.07427 
2.33 0.06985 
2.49 0.06520 
2.69 0.06030 
2.94 0.05509 
3.26 0.04954 
3.72 0.04357 

cumulative weight fraction, according to the methods 
they specify. In this case, the mean particle size is the 
median, I),,, of the dist~bution. In the case of the 
Zehner [ 121 and Bauer and Schhinder models [ 1 I], the 
mean size was calculated from equation (14) but then 
corrected by a shape factor to yield the gas path and 
radiation lengths, xn and xR, respectiveiy. The shape 
factors were derived from minimum fluidization vel- 
ocity measurements using the Ergun [32] correlation. 
With the exception of the models of Zehner, and 
Bauer and Schliinder, all the models were evaluated 
assuming point contacts and also that the pressure 
was sufficiently high to have no influence on the 
gas conductivity. For the Zehner, and Bauer and 
Schliinder models, the contact area was estimated using 
a method described by Luikov et RI. [33], but its 
contribution to the conductivity was found to be neg- 
ligible. For non-spherical particles, Imura and 
Takegoshi [4] suggest reducing the estimated gas path 
length, c$, by 10% and so this practice was followed 
here. The values of the parameters estimated for the 
Bauer and Schliinder and Godbee and Ziegler models 
are shown in Table 3. The parameters of the Zehner 
model are identicai to those of the Bauer and 
Schliinder model except that in evaluating the defor- 
mation factor, F, in equation (S), go is taken as unity. 

3.3. ~ump~riso~ between e~per~~~enta~l~ e.~tirnute~~ 
and predicted conductivities 

The model predictions are shown together with the 
experimental values in Figs. 5,-7. The silica sand 

Emissivity 
Alumina 

0.45 
0.477 
0.5 I 
0.552 
0.595 
0.636 

_ 

curves were calculated using parallel-axis data. The 
Wakao and Kato model [l] can only be applied to a 
bed with voidage close to 0.395 and therefore was not 
considered appropriate for the alumina bed which had 
a voidage of 0.54. It is apparent that while all the 
predictions are of the right order of magnitude, they 
cover a range of values. Moreover, the temperature 
dependence of the effective conductivity predicted by 
the models is generally far less than that determined 
experimentally. Only the Laubitz model gives good 
agreement with alumina but this overpredicts for the 
two grades of silica sand. 

4. IMPLICATIONS OF THE EXPERIMENTS 

AND MODELS 

4.1. The conductive and radiative components qf the 
effective thermal conductivity 

It is useful to consider the effective thermal con- 
ductivity to be the sum of a conductive component 
and a radiative component that is 

k, = k,+k,. (1% 

The conditions relating to the validity of this approach 
have been discussed by Vortmeyer and Kasparek [25]. 
It is not, however, possible to estimate the value of 
these components from experimental thermal con- 
ductivity measurements without recourse to a model. 
Nevertheless, by making certain assumptions it is 
possible to estimate limiting values for the radiative 
and conductive components. Equation (15) can be 

Table 3. Estimated values of the parameters used in the various models 
__________..“..._ ~~~~~~.__.._._.__ __ .~~~.._ _... 

Alumina 
Mean particle size, D, (pm) Reference 376 

.__.-_~._~~__-.. ~__~ .____~~ ..--... 
Voidage, E Godbee and Ziegler [S] 0.54 
&, (pm) Godbee and Ziegler [8] 370 
D,, (Nm) Godbee and Ziegler [S] 425 
Log standard deviation Godbee and Ziegler [8] 0.1386 
Mean particle size Godbee and Ziegler [8] 374 
Upper point of truncation (pm) Godbee and Ziegler [8f 450 
Lower point of truncation (pm) Godbee and Ziegler [8] 330 
Shape factor, r Godbee and Ziegler [S] 0.71 
Shape factor, II, Bauer and Schltinder [ 1 l] 0.88 
XL3 Batter and Schliinder [I I] 427 

&formation factor, F 
Batter and S&hinder [l I] 427 
Bauer and Schliinder [I I] 1.91 

Contact area fraction, 6 Bauer and Schliinder [ 1 I] 9.7 x 1o-4 
Deformation factor, F Zehner [ 121 1.17 
________ _._-__ _.~.__. -.-... ~~-~..- -~- - ---- .--- ------ --------- 

Silica 
410 

0.43 
447.5 
508 

0.1268 
451 
567.5 
322.1 

0.96 
0.9 

456 
456 

3.27 
8.64x IO-’ 

1.92 

Silica 
590 

~_ .~~ i-. ..~~ 
0.43 

650 
693 

0.06405 
651 
715 
465 

0.93 
0.88 

670 
670 

2.94 
7.84x Io’J 

1.90 
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FIG. 5. Comparison between measured effective thermal conductivity of bed of 376 m alumina and model 
predictions : 1, experimental; 2, Bauer and S&hinder [l I] ; 3, Godbee. and Ziegler [8] ; 4, Imnra and 

Takegoshi [4] ; 6, Knnii and Smith [6] ; 7, Laubitz [9] ; 8, Zehner [12]. 

made dimensionless by dividing by the gas thermal 
conductivity 

K. = q+lc,. (16) 

Assuming that the conductive component is inde- 
pendent of the radiative component, it can be shown 
by dimensionless analysis that the dimensionless con- 
duction component, rc,, for a given bed geometry is a 
function of the ratio of the solid and gas thermal 
conductivities, v. It is evident that icC increases mono- 
tonically with increasing v. Figure 8 shows the exper- 
imental effective thermal conductivity data for the 

alumina plotted in dimensionless form. For alumina 
(and silica) the value of v falls with increasing tem- 
perature which suggests that the value ice will fall over 
the same temperature range. However, Fig. 8 shows 
that the experimental values of JC= increase over the 
temperature range, this rise being entirely due to radi- 
ant transfer. Hence, for any observed value of the 
effective thermal conductivity (e.g. point P on curve 
AO), the dimensionless radiative component must be 
larger than the observed increase in K, that is 

K, > Kc-K,. (17) 

0.2 

MO Loo 500 600 700 800 900 

Teqemhre OC 

FIG. 6. Comparison between measured effective thermal conductivity of bed of 410 pm silica and model 
predictions: 1, experimental; 2, Bauer and S&hinder ill]; 3, Godbee and Ziegler [8] ; 4, Imma and 

Takegoshi [4] ; 5, Wakao and Kato [l] ; 6, Knnii and Smith [6] ; 7, Laubitz [9] ; 8, Zehner [12]. 
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Temper&se OC 

FIG. 7. Comparison between measured effective thermal conductivity of bed of 590 pm silica sand and 
model predictions : 1, experimental ; 2, Bauer and Schliinder [I l] : 3, Godbee and Ziegler [8] ; 4, Imura and 

Takegoshi [4] ; 5, Wakao and Kato [l] ; 6, Kunii and Smith [6] ; 7, Laubitz [9] ; 8, Zehner [IX?]. 

Figure 8 shows that radiation makes a significant 
contribution to the experimental conductivity, at least 
18% at a temperature of 977°C which corresponds to 
point A. Similar results are obtained for the 410 and 
570 ,um grades of silica, that is 24.6% at 877°C and 
34.5% at 877”C, respectively. 

Figure 9 shows the conduction component curves 
predicted by the models for the silica beds. These were 
calculated by neglecting the radiation parameters in 
evaluating the models. The curves in Fig. 9 apply to 
both the 410 and 590 pm sand because the packings 
had virtually the same voidage with the consequence 
that the models, which rely on the voidage to charac- 
terize the packing predicted similar values. Also the 

models which take the particle size distribution into 
account [8, II, 121 gave very similar estimates. The 
models generally yield conductive components with 
similarly shape-d, shallow sloping curves but there is 
considerable variation between their absolute values. 
The predictions of the Laubitz model [9] are notice- 
ably higher than the other model predictions and have 
a curve of steeper slope. This is because they are 
arbitrarily calculated as twice the value calculated by 
the Russell model [lo]. The Russell curve is shown in 
Fig. 9 and although the estimates are lower than the 
rest, it has a slope of similar magnitude. Hence with 
the exception ofthe Laubitzmodel, the models suggest 
that the conductive component is not greatly influ- 
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FIG. 8. The experimental effective thermal conductivity of 375 pm alumina in dimensionless form ; numbered 
points refer to corresponding temperatures (“C). 
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FIG. 9. The conduction component of the effective thermal conductivity of 410 pm silica sand predicted 
by various models : 2, Bauer and Schliinder [l l] ; 3, Godhee and Ziegler [8] ; 4, Imura and Takegoshi [4] ; 

5, Wakao and Kato [l] ; 6, Kunii and Smith [6] ; 7, Laubitz [9] ; 8, Russell [lo] ; 9, Zehner [12]. 

enced by temperature over the range investigated. 
Comparison between the conductive component esti- 
mates in Fig. 9 and the model estimates in Figs. 6 and 
7 shows that the predicted radiative component is 
small compared with the conductive component. This 
behaviour of the models is at variance with the deduc- 
tions made from the experimental data above. Some 
of the models (Wakao and Kato [l], Imura and 
Takegoshi [4], Zehner [ 121, Bauer and Schhinder [l l] 
predict values for the conduction component which 
are greater than the experimental values at low tem- 
peratures. This shows that these models overpredict 
the conduction component at these temperatures. The 
Bauer and Schhinder model gives higher predictions 
than the Zehner model. The main difference between 
these two models is the allowance for the particle 
size distribution used in the Bauer and Schliinder 
model. This function is evidently inapplicable to the 
narrow size distributions of fine particles used in this 
work. The Zehner model gives closer predictions 
of the experimental values and particularly for the 
alumina. 

4.2. Factors affecting the behaviour of the conductive 
component 

In Section 3.3 it was pointed out that the conduction 
component curves of some of the models disagreed 
with each other and that certain models predicted 
conduction component curves which were incon- 
sistent with the experimental measurements. 
However, most of these models have only been tested 
previously against experimental measurements taken 
on various packed beds over a limited range of tem- 
peratures and have been found to give good results. 
This would suggest that the overprediction may be 

due to the failure of these models to deal with beds of 
materials substantially different to those on which 
they were originally tested. For example, the cor- 
relations of the Imura and Takegoshi models were 
derived from measurements taken on beds of uniform 
spheres. In each model, the packing of the bed is 
characterized by a parameter, which usually cor- 
responds to a dimension in the unit cell and is ex- 
pressed as a function of various bed properties such 
as voidage, co-ordination number or particle size dis- 
tribution. The methods used to evaluate this ‘packing 
parameter’, may be empirical or theoretical. For 
example, the parameter in the Imura and Takegoshi 
model is derived from an empirical correlation in 
terms of E and v. Figure 10 shows the effect of varying 
this ‘packing parameter’ on the conductive com- 
ponent predicted by the Imura and Takegoshi models. 

The figure shows that for a wide variation in 4, the 
model predicts that the temperature dependence of 
the conduction component is low compared with that 
of the experimental results. It was found that all the 
models exhibited this behaviour when their packing 
parameters were varied. As these models have been 
found to give good agreement when fitted to exper- 
imental measurements taken at ambient temperature 
when radiation would be negligible, this suggests that 
the temperature dependence of the conduction com- 
ponent is indeed low and cannot explain the high 
temperature dependence of the present experimental 
results which must therefore be attributed to radiative 
transfer. Incidentally, two other explanations for the 
high experimental temperature dependence of the 
thermal conductivity, namely increasing interparticle 
contact because of softening at higher temperatures 
and the development of natural gas convection 
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FIG. 10. The effective thermal conductivity of 376 pm alumina predicted by the Imura and Takegoshi 
model [4] for various values of packing parameter, 4. 

through the interstices of the bed, were considered 
and readily discounted [34]. 

4.3. Factors affecting the behaviour of the radiative 
component 

One possible explanation why the models con- 
sistently underestimate the degree of temperature 
dependence is because the emissivity values used in 
the calculations may not be applicable to the samples 
of alumina and silica used in the experiments since the 
emissivity of a material is greatly dependent on the 
condition of the sample. Consequently, the effect of 
varying the particle emissivity on the predicted effec- 
tive thermal conductivity was examined. Figure 11 
shows the predicted effective thermal conductivity 
curves obtained from the Godbee and Ziegler model 
for the 410 pm sand assuming three possible cases: 

no radiation at all; the emissivity is given by the 
reported values ; the particles are black (e = 1). As the 
emissivity is increased, the temperature dependence of 
the model curve increases but even with the maximum 
emissivity value of unity, the temperature dependence 
never attains that experimentally observed. 

Although there is doubt about the accuracy of the 
published values for the emissivities of the test 
materials they would not be as high as one. Whilst 
surface roughness can considerably increase the effec- 
tive emissivity of a metallic surface it has only a limited 
effect on non-metals. This is because radiation is able 
to penetrate some way below the surface layer of 
atoms in non-metals before being absorbed or 
reflected [29]. Consequently it is evident that the 
models predict a considerably lower radiation con- 
tribution than was found. 

300 Loo 500 600 700 800 9QC 

Temperature OC 

FIG. 11. Comparison between the effective thermal conductivity for a bed of 410 pm silica sand and 
predictions of the Godbee and Ziegler model [8] ; I, experimental; 2, e + 0; 3, e + 0.37 ; 4, c + 1; 5, 

e -P 0 and silica conductivity perpendicular to c-axis. 
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The Godbee and Ziegler model is used to illustrate 
this point because it gives a conductive component 
that is consistent with the experimental results and a 
radiative component which is generally larger than 
those of the other unit cell models. The radiative com- 
ponents of the different models can be compared by 
adopting the procedure of Vortmeyer [ 161 and 
expressing the various radiative conductivities in the 
form 

k, = 4qD,T3. (10) 

The x values can then be calculated for each model 
and compared as in Table 1 in that the higher the 
value, the higher will be the radiative conductivity. 
For models where the radiative component is additive 
(Godbee and Ziegler, Imura and Takegoshi), the radi- 
ation component will equal the radiative conductivity 
given by equation (10) but for the non-additive 
models the radiative component is less than k, and 
dependent on the solid conductivity. Table 1 suggests 
that only the Laubitz model gives a higher radiative 
component than that of Godbee and Ziegler. This 
is because the Laubitz expression neglects reflections 
between surfaces in its derivation. As noted earlier, 
Laubitz obtained good agreement with some of the 
materials he tested by doubling the conduction com- 
ponent predicted by Russell’s equation and adding a 
radiative component. Doubling the conductive com- 
ponent doubles its temperature dependence and as the 
Laubitz radiation expression gives high results, he was 
able to reproduce the high temperature dependence 
of his measurements using reported emissivities. This 
procedure seems arbitrary and our experiments show 
that it overpredicts for silica. It follows that if the 
Godbee and Ziegler model cannot reproduce the tem- 
perature dependence of the experimental results then 
none of the other unit cell models can. 

The table also includes the x values calculated for 
two pseudohomogeneous models ; those of Vortmeyer 
[16] and Kasparek and Vortmeyer [27] (see Section 
2.8). The x values given by these models are higher 
than those of the unit cell models but are still not high 
enough to predict the temperature dependence of the 
experimental results. 

Figure 12 shows the effect of increasing the value 
of the layer transmittance factor, B, beyond that pre- 
dicted by Vortmeyer. The calculations were per- 
formed using the conductive component predicted by 
the Godbee and Ziegler model for 410 pm sand and 
reported emissivities. As B is increased the tem- 
perature dependence of the curve increases. At a value 
of B = 0.54 the slope of the model curve is similar to 
the experimental curve. Also the two curves are 
roughly coincident suggesting that the estimate of the 
conductive component is also quite good as well. A 
similar procedure was adopted for the 376 pm alumina 
and 590 /rm sand giving rise to values for B = 0.55 
and 0.54, respectively. The x values for the three beds 
are 1.62, 1.69 and 1.73, respectively. In the case of 
alumina, the predicted curve was not coincident with 

the experimental one as for the 410 pm sand. Conse- 
quently the value of B was chosen which produced a 
curve that was approximately parallel to the exper- 
imental one. The justification for this procedure is 
that it is the temperature dependence (or slope) that 
should be compared; the discrepancy is due to an 
underprediction of the conductive component for 
alumina by the Godbee and Ziegler model. As 
explained in the previous section, an incorrect pre- 
diction of the conductive component has little effect 
on the overall temperature dependence. The higher 
estimated values of B are consistent with the trans- 
mittance of the bed being far higher than the Vort- 
meyer model predicts. This is to be expected if the 
particles are partially transparent to radiation and not 
opaque as the unit cell and the pseudohomogeneous 
models assume. Further incidental evidence that this 
is likely to be so is the fact that heat transfer to fouled 
boiler tubes is higher than would be accounted for if 
the deposit were completely opaque to radiation [35]. 

The considerable transmittance data collated by 
Touloukian and Dewitt [29] suggests that alumina 
has a normal spectral transmittance of about 0.8 in 
the l-7 pm wavelength range [36] while for silica 
values of about 0.95 have been observed in the 0.2-4 
pm wavelength range [37]. As noted above regarding 
the values of emissivity for use in the model predic- 
tions, there will be similar uncertainty in applying the 
values of transmissivity to the experimental samples 
but, using these data, some estimates were made for 
the normal total transmittances of alumina and silica 
at 904°C [34]. These estimates assumed a black body 
distribution; a transmittance of zero for wavelengths 
where data was unavailable ; that the normal spectral 
transmittance was independent of temperature. The 
data show that the latter assumption is reasonable for 
alumina. The calculated normal total transmittances 
were 0.29-0.36 for 0.254 mm thick samples of poly- 
crystalline alumina and 0.56 for a single crystal 
sample. For a 1.3 mm thick single crystal of silica, a 
value of 0.54 was obtained. The two samples of silica 
gave very similar values of x and, as they only differ 
in their particle sizes, this suggests that equation (10) 
adequately represents the influence of particle size 
on the radiative component. Although transmittance 
does decrease with increasing sample thickness, the 
variation is not marked. For these materials and tem- 
perature ranges, the normal total transmittance 
increases with increasing temperature as the peak of 
the black body radiation distribution is shifted to 
the lower wavelengths where alumina and silica are 
transparent. This increasing transmittance is therefore 
suggested to be the cause of the strong temperature 
dependence of the bed’s effective conductivity. 

5. CONCLUSIONS 

Each of the tested models for the prediction of the 
effective thermal conductivity of static packed beds at 
temperatures up to 950°C gave a different degree of 
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FIG. 12. Estimate of effect of transmittance number, B, for a bed of 410 pm silica sand: I. experimental ; 
2,B=0.45;3,B=0.5:4,B=0.55;5,B=0.6. 

temperature dependence. Although their predictions 
were generally within an order of magnitude of meas- 
ured effective conductivities for beds of 376 pm alum- 
ina and 410 and 590 pm silica sand, none could predict 
the high degree of temperature dependence observed. 
Their inadequacy is attributed to their treatment of 

the bed particles as opaque to radiation whereas alu- 
mina and silica do transmit certain frequencies. 

Deficiencies in the prediction of the conductive 
component by some models is attributable to their 
inability to characterize the effects of particle shape 

and size distribution. 
The Godbee and Ziegler [8] and Kunii and Smith [6] 

models gave reasonable predictions of the conductive 
component of the silica beds at the lower temperatures 
for which radiant transfer is negligible. 
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CONDUCTIVITE THERMIQUE EFFECTIVE DES LITS PARTICULAIRES A HAUTE 
TEMPERATURE-II. PREDICTIONS DES MODELES ET VALEURS EXPERIMENTALES 

R&mr~n passe en revue plusieurs modeles connus, du type a la fois cellule unitaire et pseudohomogene, 
pour illustrer les approches diffirentes dans la modtlisation de la conductivitt thermique effective. Leurs 
predictions sont comparees avec des valeurs experimentales obtenues pour des lits fixes d’alumine et de 
sable, dans le domaine de temperature de 400 a 950°C. Aucun modtle ne predit convenablement aux 
temperatures elevees. Ceci est attribut a l’hypothese que les particules sont opaques au rayonnement tandis 
que l’alumine et la silice sont semi-transparentes. Les dtficiences de quelques modeles sont atribuees a 
l’inaptitude a caracttriser les effets de la forme de la particule et de la distribution en taille. Les modtles 
de Godbee at Ziegler (J. Appl. Phys. 37, 55 (1966)) et Kunii et Smith (A.1.Ch.E. JI 6, 71 (1960)) donnet 
des previsions raisonnables pour la composante conductive des lits de silice aux temperatures faibles pour 

lesquelles le transfert radiatif est negligeable. 

DIE EFFEKTIVE WARMELEITFAHIGKEIT VON SCHUTTUNGEN BE1 HOHEN 
TEMPERATUREN-II. MODELL 

Zusamrnenfassung-Es wird ein Uberblick tiber verijffentlichte Modelle-sowohl von Einheitszellen als 
such Pseudohomogenitlt ausgehend-gegeben, urn die unterschiedlichen Moglichkeiten zur Modellierung 
der effektiven Wlrmeleitfihigkeit zu illustrieren. Daraus resultierende Werte werden mit denen verglichen, 
die fur Schtittungen von Aluminium bzw. Sand im Temperaturbereich von 400 bis 950°C experimentell 
bestimmt wurden. Keines der Modelle beschreibt die beobachtete hohe Temperaturabhangigkeit. Die 
Ursache fur dieses Unvermogen wird darin vermutet, da8 die Partikel als opak angenommen werden, 
wahrend sowohl Aluminium als such Silizium teilweise transparent sind. Mange1 einiger Modelle in der 
Beschreibung der leitenden Komponente werden der Unfahigkeit zur Berticksichtigung des Einflusses von 
Partikelform und -grBBenverteilung zugeschrieben. Die Modelle von Godbee und Ziegler (J. Appl. Phys. 
37, 55 (1966)) und Kunii und Smith (A.Z.Ch.E. JI 6, 71 (1960)) lieferten eine brauchbare Beschreibung 
der leitenden Komponente von Sandschtittungen bei tieferen Temperaturen, wo der Strahlungsanteil 

vernachllssigbar ist. 


